
Requirements Specification: Version 1.0

12/08/2022

Floor Explorer Algorithms Team

Sponsored by: Michael Leverington

Mentored by: Rudhira Talla

Members:

Jacob Doyle, Armando Martinez, Luke Domby, Aidan Halili, Vincent Machado

X_________________________ X__________________________

Table of Contents

1.0 Introduction 1

2.0 Problem Statement 2

3.0 Solution Vision 4

4.0 Project Requirements 5
4.1: Robot Description 6

4.1.1 Robot Description: Functional Requirements 6
4.1.2 Robot Description: Performance Requirements 7
4.1.3 Robot Description: Environmental Requirements 7

4.2: Map Generation 8
4.2.1 Map Generation: Functional Requirements 8
4.2.2 Map Generation: Performance Requirements 9
4.2.3 Map Generation: Environmental Requirements 10

4.3: System Navigation 11
4.3.1 System Navigation: Functional Requirements 11
4.3.2 System Navigation: Performance Requirements 12
4.3.3 System Navigation: Environmental Requirements 13

4.4: Auxiliary Self-Localization 14
4.4.1 Auxiliary Self-Localization: Functional Requirements 14
4.4.2 Auxiliary Self-Localization: Performance Requirements 15
4.4.3 Auxiliary Self-Localization: Environmental Requirements 15

5.0 Potential Risks 16

6.0 Project Plan 17

7.0 Conclusion 18

1.0 Introduction

As the years have gone by, we have seen an increase in the use of robotics in

many different fields, but unfortunately, classrooms have not been able to keep up with

this rising demand. We have seen non-trivial simulators and limited functionality robots

in the classroom setting, but what if we had a higher standard for robotics software?

What if there was a way to integrate more of this at an “affordable” cost? When we say

affordable, it’s important to denote that this means affordable in terms of the average

household, and not just that of an academic organization.

Our sponsor, Michael E. Leverington, has been attempting for years to create

both; a robot capable of being modular in its use and programmability, and modular

software implementing a basic navigational component. He recently came up with the

idea of using the IRobot Create 3, to help test the navigational software components.

The Create 3 is a small circular robot with similar sensors and capabilities to that of a

Roomba vacuum, a common robot found in society today. The Create 3 is a relatively

cheap (under $500) solution, and easily accessible to those with access to computers. It

comes standard with basic mobility actuators and a variety of sensors, all which can be

programmed to complete user decided tasks. Team F.E.A.T. is dedicated to creating a

robotics platform that can be programmed as needed to a variety of similarly functioning

robots. Aside from creating a modular platform, it will show proof of concept and

function as a tour guide for the 2023-2024 academic year at Northern Arizona

University.

1

2.0 Problem Statement

As we stated above, getting your hands on robotics equipment is becoming

easier and more affordable, but how does this benefit the academic community? Our

Create 3 robot comes standard with mobility tools and data collection, but all of this

happens under the hood of the proprietary product. For example, we can program the

robot to move in any direction, rotate, and even sing in any number of different orders

and lengths. This might be beneficial to beginners, but we aim to make a navigational

software that intermediate and more advanced students can learn from. This is exactly

why our product will be an open source, easily implemented, and most importantly, a

robust piece of software. Academia will greatly benefit from this product as it can

manipulate the code however the organization seems fit, which will ultimately give

students the tools they need to better the robotics industry.

More specifically, our problem is within the idea of self localization. That is, that

anywhere in a designated area, the robot should be able to detect its location. Dr.

Leverington has attempted to create this software for years now, and now that we

actually have hardware that is up for the task, we believe that he will finally see this

project succeed. Previous halts in production included this lack of hardware, lack of

testing, and most importantly, a lack of modularity. A previous attempt did very well for

this idea of self localization, however, the software was not implemented on any robotics

system, and in turn, not very applicable to the end goal of this project. We’ve seen many

teams conceptually understand the idea, but either the system was imperfect or not

robust enough, have been the main reasons this product hasn’t seen the public eye yet.

Ultimately, we have a clear set of objectives with this project:

2

● Self localization via;

○ Wi-Fi triangulation

○ Coordinate system orientation

● Efficient mobility and obstacle avoidance

● Guaranteed safety mechanism

● Sensor compatibility

3

3.0 Solution Vision

In order to accomplish these goals, the software cannot be single use for this

specific robot. This is the main difference in how FEAT will conduct the project, and why

it has not had success in the past. Previously, the team was assigned a robot and the

task of implementing self localization. With the previous version robot, there were

various hardware problems that caused the project to fail. Another version of this

project, in fact, didn’t have a working robot. We can see that although having a modular

software component, we need the ideal robot to test and implement the software on.

From there, the modularity will have already been virtually completed due to how we

design the navigation system. The fundamental idea that our project is based upon

while having an easily accessible and programmable robot at our disposal could very

well be the difference that this project desperately needed.

We plan on using an industry known robotics language called to ensure that the

modularity of the software is maintained. It is easily recognized by multiple embedded

computer/robotics systems, and is the perfect tool to execute commands without having

to dive too deep into the logistics of robot actuators.

4

4.0 Project Requirements

Our project is based on four domain-level requirements: Robot Description, Map

Generation, Navigation System and Auxiliary Self-Localization.

- Robot Description lists the hardware and software recommended for this

project as well as the hardware/software provided by the client. It also describes

the data required by other requirements .

- Map Generation focuses on the use of sensors and odometry to create a map, a

pre-requisite for Map Navigation and Auxiliary Self-Localization.

- Navigation System targets the navigation through the previously generated

map, following a given route given by the user, and reacting in real-time to

obstacles along the way. In addition to that, the Navigation System is designed to

keep track of the robot’s location, storing the odometry data provided by it in

real-time.

- Given the problems involving self-localization from previous iterations of this

project, we have decided to add an additional requirement, Auxiliary

Self-Localization, which uses Wifi Routers Triangulation to give an additional

layer of self-localization to the robot.

5

4.1: Robot Description

In order for our project to maintain modularity, it is necessary to set a few

standards for anyone planning on implementing this software. For example, we must

ensure that the users have compatible sensors and actuators in the robot they plan to

use. We plan on constructing our code so it can support a number of different sensors,

but the user must ensure that theirs is going to be compatible with our code.

4.1.1 Robot Description: Functional Requirements

- For the user to implement this project, it is required to have:

- A robot with the following features:

- Capable of running ROS2 commands.

- Access to a mountable LIDAR scanner (or equivalent) in

real-time, or similar IR functioning sensors.

- A consistent and accurate source of real-time odometry

data.

- An onboard raspberry pi unit, or any other embedded

computer unit.

- A battery life with at least 1,800 mAh and maximum Voltage

of 16.8 V.

- A storage capacity of at least 128GB

6

4.1.2 Robot Description: Performance Requirements

- The features described in 4.1.1 will be used in the following way:

- Running ROS2 commands in fundamental to run this project’s code

- LIDAR real-time data (or equivalent) will be used for the Map

Generation and Navigation System requirements.

- Odometry data will be used in all other requirements.

4.1.3 Robot Description: Environmental Requirements

- Robot Hardware/firmware provided by the client:

- The robot provided by our client is an iRobot Create 3, that has the

following specifications:

- Firmware version: WIP

- 7 pairs of IR proximity sensors (Letters A-G in Image 1)

- Three physical buttons

- Power Button (Button 3 in Image 1)

- Features a ring of six RGB LEDs for indication.

- Buttons • and ••

- Buttons that can be repurposed by the user

- Four cliff sensors (Letters H - K in Image 2)

- Optical Odometry Sensor (Number 4 in Image 2)

7

4.2: Map Generation

As stated above, a known coordinate system of the robot’s environment

will be our primary focus in this version of the project. Diving deeper into this concept, it

is important to understand that this is not a “plug and play” component. An initial coastal

navigation function must be performed before this piece of the software can be useful to

its users.

4.2.1 Map Generation: Functional Requirements

- The robot should be able to map an entire floor, which it will accomplish

based on the following functions:

- A coastal navigation function used to draw a map of the floor

- Alternatively, LIDAR or similar IR sensors allow for the robot

to travel down the middle of halls without needing to move

alongside a wall.

- A function that will read sensor input, which will be called by the

coastal navigation function. The sensors should constantly be

accepting input which it will store as points with coordinates to build

the most accurate map possible.

- An obstacle avoidance function that will work slightly differently than

the one we plan on using for normal navigation since the robot has

to reorient itself to be parallel to the wall or object it encountered as

opposed simply going around it. The most common scenario where

8

this function will be implemented is when the robot runs into a

corner, or any type of object resting against the wall

- A function to handle turns for cases when the robot either goes into

a corner, or if the robot needs to round a corner.

- In the event that the robot stops due to the cliff sensors, it will turn

at a specified angle so that it can follow ledges such as the top of a

staircase.

4.2.2 Map Generation: Performance Requirements

- The functions will work as described below:

- The coastal navigation function will implement the wall-follower

algorithm, which dictates that following one side of a wall in a maze

where all walls are connected (i.e. a simple maze, which is how

most buildings’ floor plans could be categorized) will lead either to

an exit or back to the starting point. It should be able to follow the

same side regardless of sensor type. It can be set to follow a wall to

its left or right.

- The LIDAR sensor has a greater effective range than the IR

sensors. While the default IR sensors can detect objects from only

one foot away, the LIDAR sensor can detect objects up to 12

meters away. This means that the LIDAR sensor will capture more

data than the IR sensor will, thus allowing for an accurate map to

be made in less time since it doesn’t need to follow a wall.

9

- The time it takes for the coastal navigation function to finish

depends on the size of the floor plan, but the most important aspect

is that it shouldn’t require any human assistance beyond opening

doors or calling elevators.

- If the robot is following the left wall, it will always turn left to round a

corner and right when running into a corner. If it is following the

right wall, then it will always turn right to round a corner and left

when running into a corner.

4.2.3 Map Generation: Environmental Requirements

- The accuracy of the map being generated hinges on the hardware

provided by the client.

- Since the left side of the iRobot Create 3 is more sensor-heavy

than the right side, it would be more practical to perform coastal

navigation based on its left side.

- The software platform as a whole must be modular so that it can be

used on other robots. So while it may be tempting to use an

existing Create 3 wall follow function, it is proprietary and will not

work on the thirty gallon robot as it isn’t a Create 3 robot.

- There are certain areas in the engineering building that the robot

should stay out of. For instance, it shouldn’t be going into bathroom

stalls and it should never leave the building if there happens to be

an open exit.

10

4.3: System Navigation

Once the robot has finished performing a coastal navigation of the building

the outcome should be a useful map stored in an easily accessible database. At this

point, it will then be ready to plan and execute a path to take on the floor it’s on.

4.3.1 System Navigation: Functional Requirements

- After the coastal navigation has been completed, the robot is now ready to

perform the following functions:

- Add coordinates to the map, which will serve as checkpoints the

robot should visit.

- Each checkpoint should be sorted from closest to farthest from the

starting point to prevent unnecessary backtracking.

- An obstacle avoidance function which will be called when sensors

coming from in front of the robot reach a certain value. It should

execute in the following steps:

- While the front sensors read an obstacle, it will continue to

rotate in increments of 45 degrees until there is space in

front.

- Move forward until the obstacle is no longer detected by

peripheral sensors.

- Rotate back to its original position and continue moving to

the next checkpoint

11

4.3.2 System Navigation: Performance Requirements

- Generating the route in which the robot will take is dependent on user

input of coordinates. This will require the user to understand a given

robot’s coordinate system. The Create 3, for example, defines positive

x-dimension as being forward and positive y-dimension being to the left of

the robot.

- When trying to move around an obstacle, the robot should be able to

alternate between clockwise and counterclockwise depending on which

side has the least input to the sensors. This is useful in case a person

runs into the robot and accidentally moves to the side it was trying to

rotate.

- When it finishes reaching a checkpoint, it should be accurate within a

certain margin of error depending on the odometry. The Create 3 is

capable of moving to a location with a 5mm margin of error, but other

robots should be accounted for.

- The plan is to take advantage of wifi triangulation to ensure as accurate of

movement and positioning as possible.

12

4.3.3 System Navigation: Environmental Requirements

- The robot should not hit anything while navigating, so bumper sensors

should not be utilized when avoiding obstacles.

- Avoidance functions will have to work with real time movements in the

environment as well, such as people crossing the robot’s path. This will

include varying types of avoidance functions that can adapt accordingly.

For example, a still chair in the middle of the hallway should invoke a

different avoidance mechanism than that of a student walking directly in

front of the robot for a short period of time. Depending on the type of

sensor that the robot is using, these functions will have to vary slightly.

13

4.4: Auxiliary Self-Localization

Auxiliary Self-Localization is meant to be a complementary requirement to

the System Navigation component. While System Navigation relies on the map

previously generated to keep track of odometry and sensors, Auxiliary Self-Localization

relies on a map of Wifi Routers, provided by the user, to determine its position.

4.4.1 Auxiliary Self-Localization: Functional Requirements

- Auxiliary Self-Localization is intended to work in the following order:

- Given the odometry and localization data provided by System

Navigation, determine an estimate of the robot’s current position.

- Then, the robot starts scanning for nearby wifi routers.

- Match the wifi routers detected by the robot with the router map we

already have. Extract the relevant data from the map.

- After that, we use the data obtained to triangulate an estimate of

the robot’s position

- We compare both estimates (odometry based vs triangulation

based) and confirm that both of these estimates confirm each other

within a margin of error.

14

4.4.2 Auxiliary Self-Localization: Performance Requirements

- The auxiliary self-localization will be able to accurately estimate the

distance of nearby routers, and using that information, it will be able to find

its own location.

- This will all happen in roughly 15 to 20 seconds which is far too slow to

function as a primary localization method. This is why we’ve chosen to use

it as an auxiliary technique. From the information gathered among

previous project attempts, we’ve concluded that this mechanism is highly

accurate yet quite inefficient, which should function perfectly as we intend

to use it.

4.4.3 Auxiliary Self-Localization: Environmental Requirements

- For the purposes of this project, we are going to limit our scope to the list

of routers available at NAU. More specifically, we must narrow this down

to the routers in the engineering building and those of the buildings

surrounding it.

15

5.0 Potential Risks

The immediate potential risk that comes with our current plan is the compatibility

between different sensors. For example, the Create 3 comes standard with 7 infrared

sensors. We are currently implementing compatibility with a 360 degree lidar sensor.

The amount of data points from this sensor greatly outnumber that of our standard

sensors, so we must ensure that we can handle all of this data. This problem also

occurs with sonar sensors that Dr. Leverington plans to use for guiding tours throughout

the Northern Arizona University engineering building, and various other sensors that

someone might wish to use.

Secondly, the difference in mobility between robots might be a factor when

dealing with robustness. More specifically, the odometry between robots might be

different in that its accuracy might vary. In many ways however, this is out of our project

specifications. This is a hardware requirement that is out of our control.

Something important to consider is the difficulty in connecting the Create 3 to the

NAU wifi due to an inability for the robot to input a username sheds light on the fact that

another school’s protection mechanism for their wifi can be a major roadblock for the

auxiliary self-localization feature, which is essential for making corrections should the

robot go off-course due to obstacles.

Another potential risk, although minor, is that the cliff sensors on a robot may

prevent it from entering an elevator, and subsequently prevent it from exploring other

floors without additional human intervention.

16

6.0 Project Plan

Our first milestone in this project is to ensure robot safety. Although our current robot has

built in protection with downward facing IR sensors, not every robot will. We can however

assume that every robot will have a mechanism for detecting stairs or drops, but we must

initially write a function that can act upon red flags that represent danger to people or the robot

itself.

Second, we must write a function that will allow a robot to learn the environment. To

begin this task, we must first ensure that a robot can perform simple tasks such as; move along

a wall while simultaneously collecting data points, store collected information in an accessible

database, and apply an accurate coordinate system to these collected data points.

Third, we must implement object avoidance. To do this we will use a lot of the same

functions that our “coastal navigation” system uses. At this point, the robot should be able to

recalculate a trajectory because of its known database of coordinates.

Fourth is implementing self localization via wifi triangulation. For this we plan to either

use an onboard router, or the robots MAC address to determine what routers it can detect

nearby. From this information, we will use a plan that a previous team used, although the

mechanism is not efficient in a timely sense.

Finally, we will show proof of concept by programming a simple tour throughout the

second floor of the engineering building. This should be extremely nontrivial at this point as it

will rely on a known coordinate system to maneuver from point to point and conduct simple

tasks in between.

17

7.0 Conclusion

With robots becoming commonplace it is imperative that schools and institutions are able

to keep up with the ever changing world around us. Educating future students on the complex

topic of robotics will require multiple learning tools to give the students the resources necessary

to make programming robots approachable. Our goal is to help further that standard of

education, to create a baseline that will allow for increased student engagement. It is important

that we create a system that will let future students be able to learn and experiment with the

software of varying robot platforms with ease.

Our solution is to create a modular software system based off of the Create 3 robot that

allows for students to be able to have a starting point to use for any robot system that uses

ROS2. To create a functional navigation system that works by using the available sensors to

map a building and then using a coordinate system to help navigate the now digital map. This

should be compatible with any robot with only minor alterations to specific variables to account

for differences in sensor feedback and sensor strength. Our program will allow for the robot to

avoid objects while moving to its desired location and will confirm its movement along the way

with occasional self localization. Our research into the technology that will allow us to complete

our project has led us to various different discoveries regarding the sensor capabilities that the

robot possesses. We found that while they do have a fast response time they do not possess

the range we were hoping for and as such have started looking for alternative sensors such as

mountable LIDAR. We also discovered that various systems in ROS2 function on quaternions

and use a different x and y plane than expected.

These important discoveries will allow us to create an autonomous system for navigating

the real world using digital maps and allow for students to have a platform to further their

education with. It is important that we help open new opportunities for students as the world

gets more advanced and complex. This project will have both a practical use of being a tour

18

guide and an educational use as being an important stepping stone towards furthering student’s

education in the field of robotics.

19

